

## REVIEW ARTICLE

# DIVINE PALPATION EVALUATING TISSUE STRESS

**Dr. Harshvardhan Jha<sup>1</sup>, Dr. Rupam Sinha<sup>2</sup>, Dr. Soumyabrata Sarkar<sup>3</sup>, Dr. Shubhadeep Maity<sup>4</sup>, Dr. Biyas Bhowmik<sup>4</sup>, Dr. Ishita Banerjee<sup>4</sup>**

<sup>1</sup>PG Student, <sup>2</sup>Professor and HOD, <sup>3</sup>Reader, <sup>4</sup>Senior Lecturer, Dept. Of Oral Medicine and Radiology, Haldia Institute of Dental Sciences and Research, West Bengal.

**Corresponding Author:** Dr. Harshvardhan Jha, PG Student, Dept. of Oral Medicine and Radiology, Haldia Institute of Dental Sciences and Research.

Email id: harshvardhan.spartan@gmail.com

## Abstract

Ultrasound elastography is a non-invasive method to assess the elasticity of soft tissues in response to applied force. This technique works on the principle of strain and shear wave imaging. Abnormal tissue deforms to a lesser extent than normal tissue after compression. Images can be obtained by measuring the amount of tissue distortion under an applied stress. Though it has limited sensitivity and specificity, it can reconstruct tissue elasticity over conventional sonography as well as is valuable in detecting disease process by producing high contrast image. Sonographic elastography is used as a therapeutic tool to explore the causes of muscle pain, understanding of the state of a tissue area and to evaluate treatment outcomes. (2018, Vol. 02; Issue 01: Page 31 - 37)

**Keywords:** Elastography, Strain imaging, Shear wave imaging, Deformation, Force, High contrast.

## Introduction

Palpation has been a very old criteria for measuring tissue stiffness and consistency. It has been a good clinical method to evaluate the elasticity of an area. As general criteria, malignant tissues are said to be stiffer than the normal tissues. Still palpation of very deeper tissues and areas was not possible until scientists discovered something which can. This article deals with a very new imaging

modality technique based on the properties of ultrasound which works mainly upon the properties of tissue stiffness. This modality is known as "ULTRASOUND ELASTOGRAPHY".

## Definition and history

Ultrasound is defined by American National Standards Institute as; "sound at frequencies greater than 20KHz" (1). Similarly ultrasound elastography is defined as; "An imaging technique where elasticity

of tissue is determined non- invasively to differentiate between normal and diseased tissue that helps to evaluate elasticity of soft tissues in response to applied force" (2).

The first recorded evidence for the use of sound in spatial orientation in bats dates back to 1794 by Lazzaro Spallanzani. Ian Donald introduced ultrasound in diagnostic medicine in 1956, when he used one- dimensional Amplitude mode (A-mode) to measure the foetal head (3). During 1970s Dr. Kit Hill of Royal Marsden College; England extracted tissue movement using ultrasound echoes. Krouskop et al modified the ideas of Dr. Hill in 1987. Dr. J. Ophir and this team members from the University of Texas in 1991 finally explained the principles of elastography. Japanese electronic giants Hitachi produced the first machine for elastography usage in 2003 and called it EUB-8500F (4).

## Principle of elastography

The underlying principle explains that upon giving any external compression there is displacement of the underlying tissues which produces some amount of strain or stress. The resultant displacement is measured and is further depicted as an image which is called an ELASTOGRAM. In general malignant tissues are harder than normal tissues so elastography is a way to use tissue stiffness for an early diagnosis in accordance with tissue palpation (5).

## Elastogram

Elastogram is the image form of ultrasound elastography. It is of two types – Grey scale elastogram and Colour elastogram (6, 7).

In gray scale elastogram the hard areas appear as dark and the soft areas appear

as bright (5, 6). In colour elastogram the increasing tissue hardness appears in the ascending order as red>yellow>green>blue (6, 7) (Fig 1).

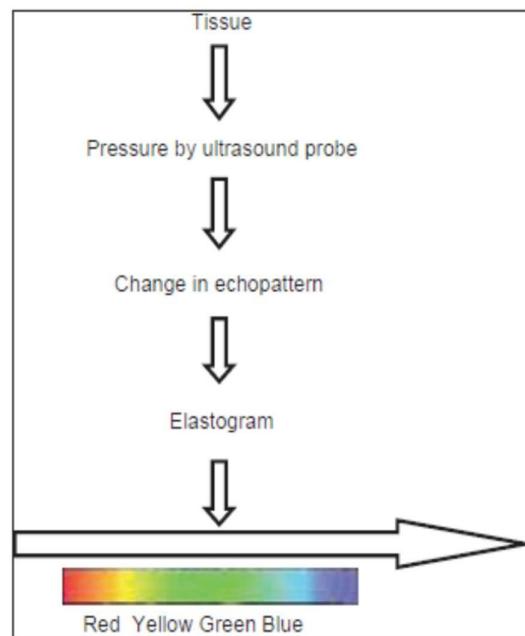



Fig 1: Image is depicting the Basic Principle of working of elastography along with different colour modes that are found in elastograms

## Types of elastography techniques

Elastography has been classified mainly as 3 types: (2)

Strain elastography/ Quasi- static elastography

Shear wave elastography

Acoustic Radiation Force Imaging(ARFI)/ Vibro Acoustography

## Strain elastography

It visualizes the strain induced within the tissue using either an external or internal source. It is also called quasi-static elastography. The force is applied to 90 degrees to the tissues (Fig 2). A small motion is induced within the tissue (approximately 2% of axial dimension) with a

quasi-static mechanical source. The axial component of the internal tissue displacement is measured by performing cross correlation analysis on pre and post deformed radiofrequency echo frames and strain is estimated by spatially differentiating the axial displacements (8, 9).

Strain imaging has the advantage of being easy to use and providing elasticity images with a high spatial resolution (10). In order to obtain reproducible elastogram compression has to be performed at least twice

(11). Strain images basically depict the difference in elasticity of a lesion and the surrounding tissue (10).

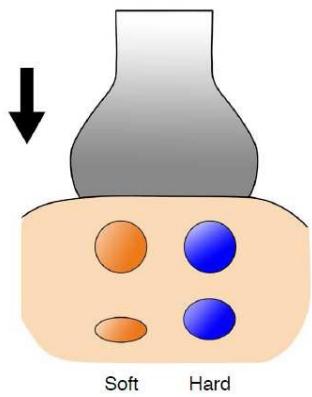



Fig 2: Pictorial representation of force application which is 90 degree to the source in strain elastography

### Shear wave elastography

This method uses acoustic radiation force applied tangentially to generate shear waves in the body (Fig 3). SONIC TOUCH (Ultrasound Transducer) which produces high intensity short duration acoustic pulse is used for this method (11). Frequencies used are in range of 50-500 Hz. The shear waves propagate in tissues at a speed of 1-10m/s; consequently they cross an ultrasound image plane of 3-6 cm width in 10-20 milliseconds (12). Elasticity is displayed using a colour coded superimposed on a B-mode image. Images in the range of 5000-20000 frames per second

are obtained.

In case of malignant tumours there is change in velocity of acoustic waves because the tumour area is stiffer than surrounding tissues.

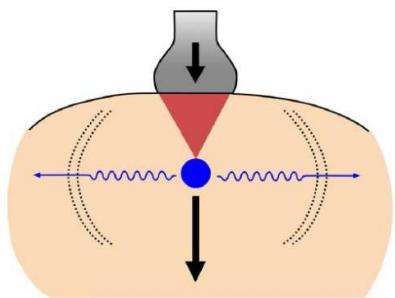



Fig 3: Pictorial representation of force application which is tangential to the source in shear wave elastography

### Acoustic radiation force imaging (ARFI)

Acoustic radiation force imaging is also known as vibro-acoustography. Two beams of frequencies in range of 2-5 MHz are used to generate acoustic emission; the difference between the frequencies should be 10-70 KHz. No external compression is needed. This technique provides estimation of viscoelastic parameter

(2). Imaging is based on acoustic response of diseased and normal tissue.

### Clinical applications in head and neck region

(1) Differentiating Benign From Malignant Cervical Lymph Nodes:

Elastography for assessment of lymph nodes was first used by Janssen et al. Lyshchik et al published one of the first clinical studies to evaluate the diagnostic strength of strain elastography by investigating 141 lymph nodes of which 98 were confirmed to be benign and 43 to be malignant by the help of histopathology;

strain elastography demonstrated sensitivity of 85% and a high degree of accuracy (13).

The 4-point elastography scale is most frequently used for detecting malignant lymph nodes. Out of which scores of 1-2 indicate benign lymph nodes, and scores of 3-4 indicate malignant lymph nodes, which appears as blue area on elastogram

(14) (Fig 4, 5)

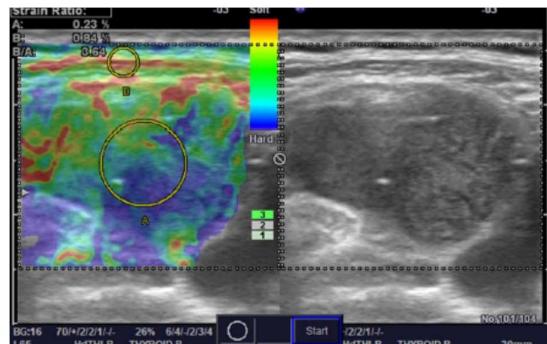



Fig 4: Strain elastogram of Metastatic cervical Lymph node

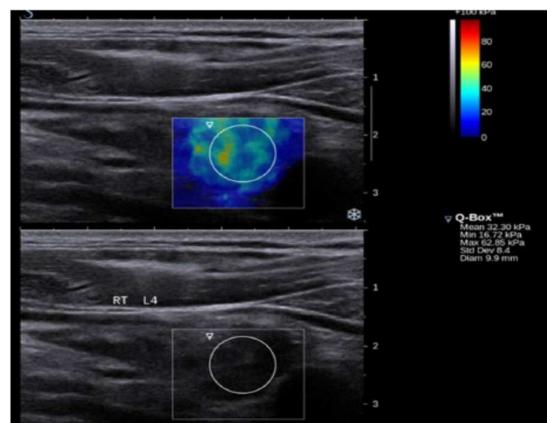



Fig 5: Shear elastogram of Metastatic Cervical Lymph Node

## (2) Evaluation of Salivary Gland Lesions:

Dumitriu et al evaluated 74 salivary tumours (out of these 18 were malignant) using strain elastography and concluded that there was higher strain indices in case of malignant neoplasms than in benign ones

(15). Another study by

Wierzbicka et al. found Warthin tumours to be elastic( in the colour coding region of

blue, green, small parts shaded yellow) and Pleomorphic Adenomas to be predominantly elastic(in the colour coding region of green, yellow; less than half shaded)

(16) (Fig 6, 7, 8, 9).

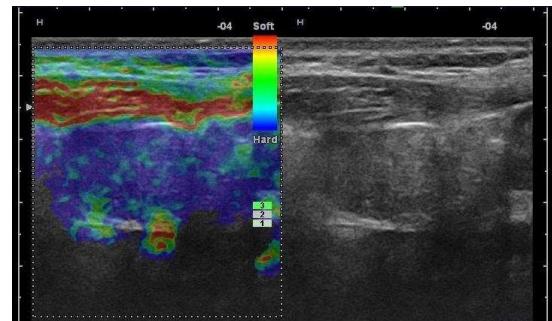



Fig 6: Pleomorphic adenoma

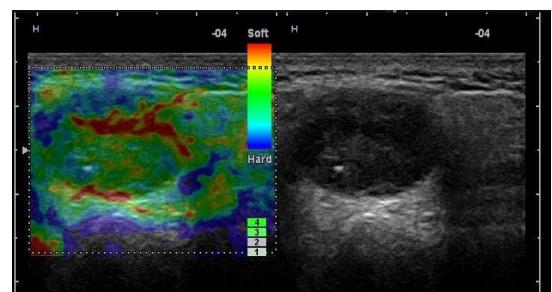



Fig 7: Basal Cell Adenoma

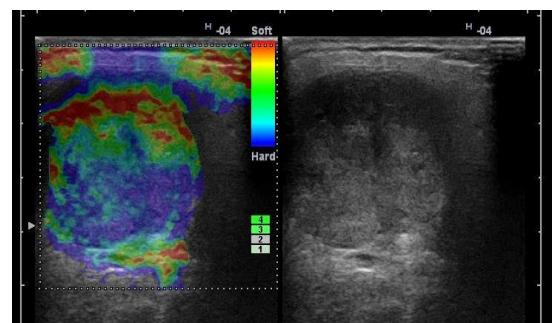



Fig 8: Acinic Cell Carcinoma

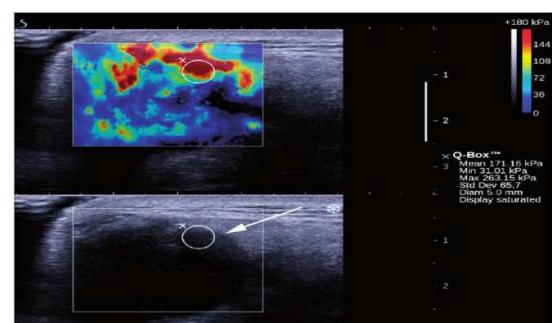



Fig 9: Parotid Gland (hypoechoic mass)

(3) Evaluation of Thyroid Nodules: Clinical application of elastography in thyroid region was first reported by Rago et al in 2007 (17). Rago et al used a five point scale based on Ueno and Itoh's study using strain elastography (18). Score of 1 defined elasticity that is soft in nodule, 2- mostly soft in nodule, 3-peripherally soft, 4-entirely hard, 5-hard in the area under consideration as well as entire nodule. There was another criteria of scoring the elasticity of nodules and it was given by Asteria et al in 2008 (19). This study used 4-point scales based on study of Itoh et al (20).

Shear wave elastography was first used in thyroid malignancy in 2010 by Sebag et al. Sebag and his team found that sensitivity was 81.5% and specificity was 97% (21). Even meta analysis of 8 ultrasound elastography studies from 2005-2009(a total of 639 thyroid nodules with 24% being malignant) showed a pooled sensitivity of 92% and specificity of 90% (22).

Figure 10 and 11 shows thyroid nodule.

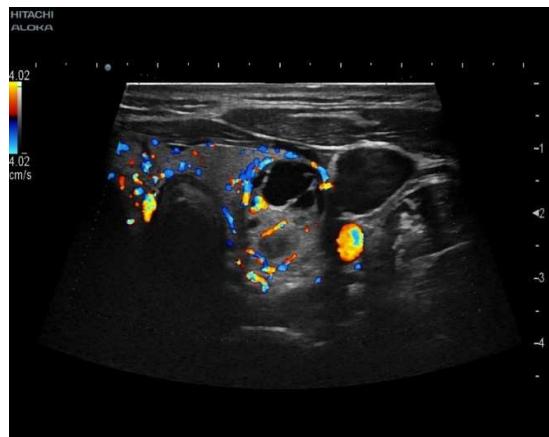



Fig 10: Complex Thyroid Nodule

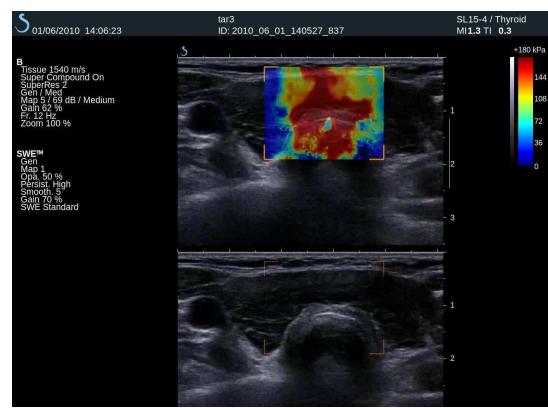



Fig 11: Thyroid Nodule

(4) Assessing Masseter Stiffness: Ultrasonic elastography can help to evaluate elasticity of muscles, internal appearance and thickness. Therefore it can assess the masseter muscle in patients with myofacial pain and temporomandibular joint disorders (TMD). A study by Akihiko and Ariji et al found that there is some potential relationship between hardness of masseter muscle and oedematous change in muscle (23). It was seen that hardness may increase in presence of oedematous change (Fig 12).



Fig 12: Elastography of Masseter Muscle

## Limitations of usage of ultrasound elastography

Elastography now-a-days is becoming an early and better way of diagnosing potentially malignant and benign lesions. However it being a new concept there are still many loopholes in its usage.

Most common of the limitations are:- Inability to control the extent of tissue compression via ultrasound. This problem has been overcome by the usage of ARFI (21).

Its usage has seen to be of little value in cases of superficial protuberant masses and in areas adjacent to prominent bony structures; where it is difficult to apply uniform compression over the entire region of interest (24).

Usage of this technique is also difficult in areas adjacent to blood vessels as pulsations from blood vessels interferes with the ultrasound waves leading to difficulty in image formation.

Little is known of its usage in relapsing or chronic lymphadenitis (7).

## Conclusion

Ultrasound elastography is a novel, non-invasive imaging modality that is now a days helping in early diagnosis of wide variety of oral malignant and benign lesions. Besides oral region its usage has proven fruitful in liver tumours and breast adenomas. Since it is giving us early diagnosis in a non-invasive way therefore in future it can replace the invasive techniques like biopsy which we are using in recent times for diagnosing malignancy. However it is still a very new and fresh concept so more and more studies and clinical trials are needed for its full proof usage.

## References

1. Reddy L et al. Diagnostic and therapeutic ultrasound in dentistry. *J Dent Orofoc Res*, 2015; 11(1): 32-36.
2. Garge N. V, Waikul V.K, Kadam J.V. Elastography: Techniques and applications. *World J Pharmacy Pharmaceut Sci*, 2016; 5(3): 359-364.
3. David M. C, Tiwari R. Ultrasound in maxillofacial imaging: A Review. *J Med Radiol Pathol Surg*, 2015; 1: 17-23.
4. Sarvazyan A, Hall TJ, Urban MW, Fatemi M. An overview of elastography- An emerging branch of medical imaging. *Curr Med Imaging Rev*, 2011; 7(4): 255-282.
5. Tan R, Xiao Y, He Q. Ultrasound elastography: its potential role in assessment of cervical lymphadenopathy. *Acad Radiol*, 2010; 17: 849-855.
6. Das D, Gupta M, Kaur H, Kalucha A. Elastography: The next step. *J Oral Sci*, 2011; 53: 137-141.
7. Asha V, Upadhyay K. Ultrasound elastography- Implications in head and neck region. *IJSS case rep rev*. 2014; 1(3): 38-41.
8. O'Donnell M, Skovoroda AR, Shapo BM, Stanislav Y. Internal displacement and strain imaging using ultrasonic speckle tracking. *IEEE Trans Ultrason Ferroelectr Freq Contr*, 1994; 41(3): 314-325.
9. Ophir J, Cespedes I, Ponnevanti H, Yazdi Y. Elastography: a quantitative method for imaging the elasticity of biological tissues. *Ultrason Imaging*, 1991; 13: 111-134.
10. Shiina Tsuyoshi. Ultrasound Elastography: Development of novel technologies and standardization. *J Appl Phys*, 2014; 53:07KA02.
11. Cosgrove D, Piscaglia F, Bamber J, Bojunga J. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography; part 2: Clinical application. *Ultraschall Med*, 2013; 34(3): 238-253.
12. Bercoff J. Shear wave elastography. White paper supersonic imagine S.A. 2008.
13. Lyshchik A et al. Cervical lymph node metastases: diagnosis at sonoelastography: initial experience. *Radiology*, 2007; 243: 258-267.
14. Lo WC, Cheng PW, Wang CT, Liao LJ.

Real-time ultrasound elastography: an assessment of enlarged lymph nodes. *Eur Radiol*, 2013; 23: 2351-2357.

15. Dumitriu D, Dudea SM, Botar-Jidc, Baciut G. Ultrasonographic and sonoelastographic features of pleomorphic adenomas of salivary glands. *Med Ultrason*, 2010; 12: 175-183.
16. Wierzbicka M et al. Is sonoelastography a helpful method for evaluation of parotid tumours? *Eur Arch Otorhinolaryngol*, 2013; 270: 2101-2107.
17. Rago T et al. New developments in ultrasound for predicting malignancy in thyroid nodules. *J Clin Endocrinol Metab*, 2007; 92: 2917-2922.
18. Ueno E, Itoh A. Diagnosis of breast cancer by elasticity imaging. *Eizo Joto Med*, 2004; 36(12): 2-6.
19. Astoria C, Giovanardi A, Pizzocaro A, Cozzaglio L. Ultrasound elastography in the differential diagnosis of benign and malignant thyroid nodules. *Thyroid*, 2008; 18: 523-531.
20. Itoh A, Ueno E, Tohono E, Kama H. Breast disease: clinical application of ultrasound elastography for diagnosis. *Radiology*, 2006; 239: 341-350.
21. Sebag F, Vaillant-Lombard J, Berbis J, Griset V. Shear wave elastography: A new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. *J Clin Endocrinol Metab*, 2010; 95: 5281-5288.
22. Bhatia KS, Lee YY, Yuen EH, Ahuja AT. Ultrasound elastography in the head and neck. Part ii. Accuracy for malignancy. *Cancer imaging*, 2013; 13: 260-276.
23. Gotoh A et al. Sonographic elastography for assessing changes in masseter muscle elasticity after low-level static contraction. *Oral Radiol*, 2013; 29(2): 140-145.
24. Li Y, Snedeker JG. Elastography: Modality specific approaches, clinical applications, and research horizons. *Skeletal Radiol*, 2011; 40: 389-397.