

REVIEW ARTICLE

PRIONS IN DENTISTRY- A MATTER OF CONCERN IN DENTISTRY

Dr. Subhasish Mustafi¹, Dr. Rupam Sinha², Dr. Soumyabrata Sarkar³, Dr. Biyas Bhowmik⁴, Shubhadeep Maity⁴, Dr. Ishita Banerjee⁴

¹2nd year PG Student, ²Professor and HOD, ³Reader, ⁴Senior Lecturer, Dept. Of Oral Medicine and Radiology, Haldia Institute of Dental Sciences and Research, West Bengal.

Corresponding Author: Dr. Subhasish Mustafi, 2nd year PG Student, Dept. of Oral Medicine and Radiology, Haldia Institute of Dental Sciences and Research.

Email id: subhasish2632@gmail.com

Abstract

Prion diseases are a group of rare fatal neuro-degenerative disorders of humans and animals that are histopathologically characterised by spongiform change of the central nervous system. These diseases include Creutzfeldt-Jakob disease (CJD), Gerstmann- Straussler- Scheinker disease (GSS), Fatal Familial Insomnia (FFI), kuru and variant CJD (vCJD) in humans. Their central feature is post-translational conversion of host-encoded, cellular prion protein (PrP^c), to an abnormal pathogenic isoform, designated (PrP^{Sc}). The aim of this article is to provide the dental community with a brief overview of the characteristics, risk of transmission and the infection-control implications of prions in dentistry. (2018, Vol. 02; Issue 01: Page 52 - 60)

Keywords: Prion, Creutzfeldt-Jakob disease, Gerstmann- Straussler- Scheinker disease, Fatal Familial Insomnia.

Introduction

Prion diseases are degenerative disorders of the nervous system caused by transmissible particles that contain a pathogenic isoform of the prion protein, a normal constituent of cell membranes. It is also known as transmissible spongiform encephalopathies (TSEs) (1). Stanley B. Prusiner discovered and defined prions as infectious, transmissible proteinaceous particles that lack nucleic acid and are

composed exclusively of a modified isoform of the noninfectious cellular prion protein (PrP^c). He won the Nobel prize for distinguishing these infectious particles from viruses or viroids and finally designated it as a prion protein (PrP) (2-4).

Prions enter a healthy individual and convert the existing properly folded protein into host-encoded cellular prion protein. The newly formed host - encoded cellular prion protein brings about a chain reaction by acting as a template to guide the

misfolding of more cell-surface protein into prion form thereby increasing their number (5). Prion disease is incurable. It causes neurodegenerative conditions which can affect both animals and humans. Prions can accumulate in central nervous system and can cause microscopic vacuolization of brain tissue called spongiform degeneration, characteristic of a group of fatal neurodegenerative diseases called transmissible spongiform encephalopathies (TSE) which is incurable and can affect both animal and humans (2).

Prion disease may be sporadic, infectious or inherited in origin. The review article provides an overall knowledge regarding characteristics, risk of transmission, potential of infection, as well as infection-control considerations of prions in dentistry (1).

Pathogenesis of prion infection

The most typical features of the prion diseases are the aberrant metabolism of the PrP, which exists in at least two conformational states with different physicochemical properties. It exists as a soluble protease sensitive cell surface protein on many cells, especially CNS (Central Nervous System) and lymphoreticular tissues (6). The PrP is expressed in most adult tissues but is found at the highest levels in the central nervous system (CNS) and immune systems.

PrPSc (Prion protein in Scrapie) is a disease associated isoform of PrP. It is found only in infected brains as aggregated material, partially resistant to protease treatment and insoluble in detergents. This mutated PrPSc gives rise to TSEs, including bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and goats

and CJD in humans. These diseases are characterized by vacuolization of the gray matter, and these vacuoles are located in the neutrophils between the nerve cell bodies (1).

Human prion disease

Prion disease may be sporadic, infectious or inherited in origin. Human prion disease can be classified into two main categories:-

1. Inherited

O Gerstmann-Straussler-Scheinker syndrome (GSS)

O Fatal familial insomnia.

O Other autosomal dominant families.

2. Acquired

O Iatrogenic Creutzfeldt-Jacob disease. O Kuru.

O Variant Creutzfeldt-Jacob disease (vCJD).

Inherited

Gerstmann-Sträussler-Scheinker-syndrome (GSS) and Fatal Familial Insomnia (FFI) both are very rare, with an annual incidence of 1 per 10 million to 100 million people. They occur in people with an apparent hereditary predisposition (7, 8). The disorders are autosomal dominant in nature and this disease is characterized by lack of coordination nystagmus and ultimately leading to death (1, 9).

Acquired forms:

1. Iatrogenic Creutzfeldt-Jacob disease (iCJD):

This disease was first diagnosed in 1974, transmitted from one person to another through cadaver-derived growth hormone, pituitary Gonadotropins, dura mater homograft, corneal grafts, blood or inadequately sterilized neurosurgical instruments. This type of prion disease is important to dentists due to the risk of cross

contamination after the use of infected dental instruments (10, 11). iCJD varies clinically from a Sporadic (Classic) Creutz- feldt-Jacob Disease (sCJD) -type disease to a disease similar to Kuru. Site of inoculation of the infectious agent determines the incubation period and rate of progression of this disease. Intracerebral or optic inoculation gives rise to the more rapid onset of disease than does inoculation that is more peripheral. CJD occurs spontaneously in sporadic cases, in the 7th decade of life. In case of this disease the mortality rate is quite high. It is about 85% within 1 year and the diagnosis is best ascertained during the final stages of the disease, at or near the time of death (4). The clinical progression is typically over weeks progressing to akinetic mutism with median disease duration of 5 months (10, 12). The disease is characterized by progressive dementia, ataxia, myoclonus, cortical blindness, akinesia and speech loss, followed by death within 4 months (7).

2. Kuru:

It is an acquired prion disease that was originally described in 1957 among the Fore linguistic group of the Eastern High- lands in Papua, New Guinea, probably acquired during ritual cannibalistic or sacrificial funeral rites. This disease is also characterized by ataxia, tremors, dysarthria and death (10).

3. Variant Creutzfeldt-Jacob disease (vCJD): This disease mainly affects the young adults with the mean age of onset being 29 years and it occurs in humans due consumption of food contaminated with Bovine Spongiform Encephalopathy (BSE) (7).

Depression, delirium, hallucination, paresthesia and dysesthesia in hands, feet and mouth followed by dementia and akinesia are the signs and symptoms of this disease (10).

Diagnosis

The diagnosis of CJD is based on demonstration of abnormal PrP immunoreactivity or more specifically biochemical detection of PrPSc in brain material by immunoblotting techniques is diagnostic of prion disease, and some forms of prion disease are characterized by deposition of amyloid plaques composed of insoluble aggregates of PrP (13).

Amyloid plaques are a notable feature of kuru and GSS, but they are less frequently found in the brains of patients with sporadic CJD which typically show a diffuse pattern of abnormal PrP deposition (14-16).

The location of the neuropathologic findings is different for TSEs: for CJD, in the cerebral cortex; for vCJD, throughout the cerebrum but mostly in the brainstem, occipital cortex; for Kuru and Gerstman- Straussler-Scheinker syndrome, in the cerebral cortex and cerebellum; and for fatal familial insomnia, in the thalamus (7).

Few diagnostics test and investigations are as follows;

1. Blood test: Extracted DNA from blood to test for mutations in person with suspected inherited prion disease.
2. EEG: For periodic sharp waves in sCJD and absence of these waves in vCJD
3. Cranial Magnetic Resonance Imaging: abnormal findings primarily in posterior thalamic area of the brain (pulvinar sign) in vCJD and occasional changes in basal ganglia in sCJD.
4. Cerebrospinal fluid test -presence of 14-3-3 protein in the cerebrospinal fluid is the only biochemical marker included in the diagnostic criteria for CJD approved by WHO
5. Tonsilar biopsy- for diagnosis of vCJD.

6. Thioflavin S shown to bind prion aggregates.

The best way to confirm the diagnosis and type of prion disease is by neuropathologic and or immunohistochemical examination of the frozen brain tissue obtained either at biopsy (not recommended for any form of CJD unless an alternative treatable

condition is suspected in differential diagnosis) or at autopsy should be performed (17).

Clinical features of human prion disease

Clinical features of prion diseases are described in table 1.

Table 1: Clinical features (2)

Types	Age of onset Year (yr)	Incubation time Year (yr)	Duration of disease (mo)	Clinical stages
CJD	60-69	Not recorded	3-6	Early – lapse in memory, mood swings (similar to depression), lack of interest, social withdrawal and unsteadiness. Late (neurological) – Blurred vision, sudden jerking movements and rigidity in limbs, slurred speech, difficulty swallowing, progressive mental deterioration, and eventually immobility and muteness.
vCJD	20-29	>4	9-35	Early (psychiatric) - mostly depression, with (less often) a schizophrenia-like psychosis; for half of the cases, unusual sensory signs, such as “stickiness” of the skin. Late (neurological) - unsteadiness, difficulty in walking and involuntary movements as the illness progresses; final stages, complete immobility and muteness.
Kuru	>20	Mean: 12	6-36	Early- cerebellar syndrome; communication difficulties due to severe dysarthria Late- progression to total incapacitation and death in final stages

Potential risk of transmission

Blood transfusion:

Studies have failed to show evidence of transmission of sCJD by blood compo-

nents or plasma products. On the contrary, there have been four reports of probable transmission of vCJD via blood transfusion, where the donors were at preclinical phase of the disease at the time of blood donation (17).

Iatrogenic factor:

By cross contamination with material in or adjacent to brain like recipients of dura mater, corneal transplants, and human pituitary hormones, and those who have undergone neurological procedures (2).

Human to human contact:

There has been no evidence to show that CJD or any other amyloidosis is transmissible from person to person by normal contact, airborne droplets or sexual contact. In spite of this there is always a possibility of transmission of amyloidoses such as vCJD from one individual to another by social contact because of the long incubation period (2).

Risk among health care workers:

There is a negligible chance of transmission of TSE to health care workers, including medical doctors and dentists through clinical contact or noninvasive clinical investigative procedure. Health care personnel should be informed about the nature of the hazard of the disease and they should be properly trained to maintain safety procedures while handling patients suffering from this disease (17).

In case of an occupational exposure while performing dental procedures on TSE patients, World Health Organization (WHO) has recommended "common sense" actions as shown in table 2: (2)

Table 2: Common sense actions in case of an occupational exposure by WHO, 2000

Incident of occupational exposure	Common sense actions
i. Contamination of unbroken skin with internal body fluids or tissues	Wash with detergent and abundant quantities of warm water, rinse and dry. Exposure to 0.1N NaOH or 1:10 dilution of bleach for 1 minute can be considered for maximum safety.
ii. Needle sticks or lacerations	Gently encourage bleeding. Wash with warm soap water, rinse, dry and cover with a water proof dressing. Further treatment like suturing should be appropriate to the type of injury. Report the injury according to normal procedures of your hospital or health care facility. Records should be kept for no less than 20 years.
iii. Splashes into eye or mouth	Irrigate with either saline (eye) or tap water (mouth). Report according to normal procedures for your hospital or health care facility.

Dental implications of prion disease

Oral manifestations of prion disease (17)

- Dysphagia (difficulty in swallowing)
- Dysarthria (poor articulation of speech)

- Paresthesia (tingling, pricking or numbness)
- Orofacial dysesthesia (abnormal sensation in the absence of stimulation). Risk of transmission through dentistry: Almost there are negligible chances of transmission of prion disease through dental treatment if proper standards of infection control and decontaminations are maintained. Up till now there has been no case reported.

There is no risk of TSE transmission in case of using commercially available bovine-derived xenogenic bone graft in case of human if strict protocols are maintained in sourcing and processing of raw bovine bone for human use. There is no relationship between tooth extraction, dental surgery or major dental work and human TSEs through several case-control studies (3). So far, only 2 possible mechanisms for the transfer of vCJD infectivity via dental instruments have been risk assessed: (5, 7, 13)

- i. Accidental abrasion of the lingual tonsil, known to carry infectivity in vCJD cases. Such a chance is extremely low (104 to 109 times less likely to transmit vCJD than tonsillectomy)
- ii. Contact with dental pulp: As because, dental pulp originates from the richly-innervated tissue of neural crest, theoretically, it is reasonable to presume that the

dental pulp of patients subclinically infected with vCJD, sCJD, and familial CJD might be infectious. All these studies give rise to the conclusion that inadequately decontaminated dental instruments may present a potential route of infection, especially in vCJD, which has greater infectivity in peripheral tissues than CJD.

Infection control in dentistry

The protocols made by National Dental Association for prevention spread of infection are sufficient for treatment of TSE patients with procedures not involving neurovascular tissue. However when invasive interventions require on patients who are at risk, much more safety and infection control measures are required to reduce the possibility of transmission of TSEs via dental instruments (3).

A combination of methods has been recommended, including thorough cleaning, chemical treatment, and/or steam sterilization (18-20).

The safest way for minimizing the risk of transmission of this disease is by using the one time use items and equipment such as disposable needles and anesthetic cartridges. The World Health Organization (WHO) provides a guideline as shown in table 3 (3, 21).

Table 3: Infection control guideline for TSE by WHO, 2000

Category	Methods
i. Incineration	<ul style="list-style-type: none"> • Use for all disposable instruments, materials and waste. • Preferred method for all instruments exposed to high infectivity tissues.

ii. Autoclave and chemical methods for heat resistant instruments	<ul style="list-style-type: none"> • Immerse in sodium hydroxide (NaOH) and heat in a gravity displacement autoclave at 121°C for 1 hour; clean and subject to routine sterilization. • Immerse in NaOH or sodium hypochlorite (20,000 ppm available chlorine) for 1 hour; transfer instruments to water; heat in a gravity displacement autoclave at 121°C for 1 hour; clean and subject to routine sterilization. • Immerse in NaOH or sodium hypochlorite for 1 hour; remove and rinse in water, then transfer to open pan and heat in a gravity displacement (121°C) or porous load (134°C) autoclave for 1 hour; clean and subject to routine sterilization. • Immerse in NaOH and boil for 10 minutes at atmospheric pressure; clean, rinse in water and subject to routine sterilization. • Immerse in sodium hypochlorite (preferred) or NaOH (alternative) at ambient temperature for 1 hour; clean, rinse in water and subject to routine sterilization. • Autoclave at 134°C for 18 minutes (to be used for worst-case scenario; i.e., brain tissue bake-dried on surfaces).
iii. Chemical methods for surfaces and heat-sensitive instruments	<ul style="list-style-type: none"> • Flood with 2 N NaOH or undiluted sodium hypochlorite; let stand for 1 hour; mop up and rinse with water. • For surfaces that cannot tolerate NaOH or hypochlorite, thorough cleaning will remove most infective agents by dilution, and some additional benefit may be derived from the use of one or another of the partially effective methods (chlorine dioxide glutaraldehyde, guanidinium thiocyanate [4 mol/L], iodophors, sodium dichloroisocyanurate, sodium metaperiodate, urea [6 mol/L]).
iv. Autoclave or chemical methods for dry goods	<ul style="list-style-type: none"> • Small dry goods that can withstand either NaOH or sodium hypochlorite should first be immersed in one or the other solution and then heated in a porous load autoclave at $\geq 121^{\circ}\text{C}$ for 1 hour. • Bulky dry goods or dry goods of any size that cannot withstand exposure to NaOH or sodium hypochlorite should be heated in a porous load autoclave at 134°C for 1 hour.

The best way to prevent cross contamination or control the spread of infection is quarantining instruments, linen, gowns,

gloves, masks in rigid leak-proof combustible clinical waste container after use and transferring the container to the incinerator as soon as possible.

Universal precaution measures which includes a precise case history by every dental patient and appropriate continuing education for dentists about the way of controlling cross infection in dental practice, regarding prevention of TSEs (2).

Guideline for dental management of patients with prion disease

There is not much difference between the procedures for dental management of patients with prion disease with that of other patients except with certain important modifications (3). According to protocols made by Centre of Disease Control and prevention (CDC) all dental instruments employed in the treatment of patients with prion disease which are difficult to clean (such as endodontic files, broaches, carbide and diamond burs) will be discarded. Single-use instrument is highly recommended. Heat resistant instruments should be thoroughly cleaned and they should be autoclaved at 134°C for 18 minutes. The dental equipments should be properly shielded using disposable, impermeable cover sheets to prevent environmental contamination (2).

Patients who are diagnosed suffering from prion disease should be scheduled at the end of the day to permit more extensive cleaning and decontamination. An independent suction and disposable bowl must be used instead of a spittoon. The suction unit must be a stand-alone suction unit to prevent cross contamination of this disease (3).

Conclusion

Previously prion diseases (except for scrapie, which has been endemic in sheep more than 250 years) were regarded as rare neurodegenerative disorders with no

serious impact on public health issues and no immediate need for the development of diagnostic or therapeutic measures. This has radically changed with the emergence of BSE and its human counterpart, variant CJD. Recently, there has been an increase in scientific and public awareness about prion disease. The risk of transmission of prions through dental procedures draws our attention towards the need to maintain optimal standards of infection control and decontamination procedures for all infectious agents, especially prions.

References

1. Sushama B, Gugwad S, Pavaskar R, Malik S A. Prions in dentistry: A need to be concerned and known. *J Oral Maxillofac Pathol*, 2016; 20(1): 111-114.
2. Azarpazhooh A, Leake J L. Prions in Dentistry- What are They, Should We Be Concerned, and What Can We Do?. *J Can Dent Assoc*, 2006; 72(1): 53-60.
3. Mckintosh E, Tabrizi SJ, Collinge J. Prion Diseases. *J Neurovirol*, 2003; 9: 183-193.
4. Hemchandra SS, Khaja S, Kaza S. Occupational hazard with "PRIONS"- in autopsy workers review. *J Ind Acad Forensic Med*, 2008; 30: 26-28.
5. Kee Y L, Dhanraj M. Prion Disease and Its Implication for Dentistry. *J Pharm Sci & Res*, 2016; 8(10): 1233-1236.
6. Pasha M I, Hiremath SS, Jaleel B N F, Swamy A U. Prion Disease and Dentistry. *Int J Oral Health Med Res*, 2016; 3(2): 90-92.
7. Wardsworth J D F, Collinge J. Update on human prion disease. *Biochimica et Biophysica Acta*, 2007; 1772(6): 598-609.
8. Bhoosreddy A R, Lathi A A, Lathi A A. Prions a Potential Threat to Mankind and

Dental Implications. *J Ind Acad Oral Med Rad*, 2010; 22(4): 23-25.

9. Pasha M I, Hiremath SS, Jaleel BNF, Swamy A U. Prion Disease and Dentistry. *Int J Oral Health Med Res*, 2016; 3(2): 90-92.
10. Keogh PV, Flint SR. Transmissible spongiform encephalopathies and dentistry. *J Ir Dent Assoc*, 2004; 50(4): 160-162.
11. Houston F, Foster JD, Chong A, Hunter N, Bostock C J. Transmission of BSE by blood transfusion in sheep. *Lancet*, 2003; 356: 999-1000.
12. Jayanti P, Thomas P, Bindhu PR, Krishnapillai R. Prion Diseases in Humans: Oral and Dental Implications. *N Am J Med Sci*, 2013 Jul; 5(7): 339-403.
13. Walker JT, Dickinson J, Sutton JM, Marsh PD, Raven NDH. Implications for Creutzfeldt- Jakob disease (CJD) in dentistry: a review of current knowledge. *J Dent Res*, 2008; 87(6): 511-519.
14. Scully C, Smith AJ, Bagg J. Prions and the human transmissible spongiform encephalopathies. *Dent Clin North Am*, 2003; 47: 493-516.
15. Wardsworth J D F, Collinge J. Molecular Pathology of Human Prion Disease. *Acta Neuropathol*, 2011; 121: 69-77.
16. Budka H, Aguzzi A, Brown Pet al. Neuropathological diagnostic criteria for Creutzfeldt- Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). *Brain Pathol*, 1995; 5: 459-466.
17. Hill AF, Joiner S, Wardsworth JD. Molecular classification of Sporadic Creutzfeldt- Jakob Disease. *Brain*, 2003; 126: 133-1346.
18. Azarpazhooh A, Fillery ED. Prion Disease: The Implications for Dentistry. *J Endod*, 2008; 34: 1158-1166.
19. Belay ED, Holman RC, Schonberger LB. Creutzfeldt- Jakob disease surveillance and diagnosis. *Clin Infect Dis*, 2005; 41: 834-836.
20. Lundmark K, Westermark GT, Nyström S, Murphy CL, Solomon A, Westermark P. Transmissibility of systemic amyloidosis by a prion-like mechanism. *Proc Natl Acad Sci U S A*, 2002; 99(10): 6979-6984.
21. Mc Donnell G, Burke P. The Challenge of Prion Decontamination. *Clin Infect Dis*, 2003; 36(9): 1152-1154.